Uncertainty principles for the Schrödinger equation on Riemannian symmetric spaces of the noncompact type

ثبت نشده
چکیده

— Let X be a Riemannian symmetric space of the noncompact type. We prove that the solution of the time-dependent Schrödinger equation on X with square integrable initial condition f is identically zero at all times t whenever f and the solution at a time t0 > 0 are simultaneously very rapidly decreasing. The stated condition of rapid decrease is of Beurling type. Conditions respectively of Gelfand-Shilov, Cowling-Price and Hardy type are deduced. Résumé. — Soit X un espace riemannien symétrique de type non-compact. On montre que la solution de l’équation de Schrödinger dépendante du temps sur X, avec condition initiale de carré intégrable f , est nulle en tout temps t lorsque f et la solution à un temps t0 > 0 donné sont simultanément très rapidement décroissantes. La condition de décroissance rapide considérée est de type Beurling. Des conditions respectivement de types Gelfand-Shilov, Cowling-Price et Hardy en sont déduites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Uncertainty Principle on Riemannian Symmetric Spaces of the Noncompact Type

The uncertainty principle in Rn says that it is impossible for a function and its Fourier transform to be simultaneously very rapidly decreasing. A quantitative assertion of this principle is Hardy’s theorem. In this article we prove various generalisations of Hardy’s theorem for Riemannian symmetric spaces of the noncompact type. In the case of the real line these results were obtained by Morg...

متن کامل

Observability on Noncompact Symmetric Spaces

The \classical case" is the case in which X is a compact riemannian manifold and D is the (positive de nite) Laplacian. Then (1.1) is the heat equation on X . In this paper we'll look at the special case where X is a riemannian symmetric space of noncompact type. Thus X is a noncompact riemannian manifold with a very large symmetry group G, harmonic analysis on X is understood in terms of the s...

متن کامل

Boundary Value Problems on Riemannian Symmetric Spaces of the Noncompact Type

We characterize the image of the Poisson transform on any distinguished boundary of a Riemannian symmetric space of the noncompact type by a system of differential equations. The system corresponds to a generator system of two-sided ideals of a universal enveloping algebra, which are explicitly given by analogues of minimal polynomials of matrices.

متن کامل

Curvature Estimates for Irreducible Symmetric Spaces

By making use of the classification of real simple Lie algebra, we get the maximum of the squared length of restricted roots case by case, thus we get the upper bounds of sectional curvature for irreducible Riemannian symmetric spaces of compact type. As an application, we verify Sampson’s conjecture in all cases for irreducible Riemannian symmetric spaces of noncompact type.

متن کامل

Riemannian Symmetric Spaces and Bounded Domains in C

This paper is to serve as an introduction to the study of symmetric spaces, with the goal of describing Hermitian symmetric spaces of noncompact type. There are three basic types of symmetric space: compact, noncompact, and Euclidean, defined in terms of properties of g, the Lie algebra of its group of isometries. It turns out that a simply connected symmetric space can be described completely ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012